Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 17984, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2087304

ABSTRACT

Parallel cascade selection molecular dynamics-based ligand binding-path sampling (LB-PaCS-MD) was combined with fragment molecular orbital (FMO) calculations to reveal the ligand path from an aqueous solution to the SARS-CoV-2 main protease (Mpro) active site and to customise a ligand-binding pocket suitable for delivering a potent inhibitor. Rubraxanthone exhibited mixed-inhibition antiviral activity against SARS-CoV-2 Mpro, relatively low cytotoxicity, and high cellular inhibition. However, the atomic inhibition mechanism remains ambiguous. LB-PaCS-MD/FMO is a hybrid ligand-binding evaluation method elucidating how rubraxanthone interacts with SARS-CoV-2 Mpro. In the first step, LB-PaCS-MD, which is regarded as a flexible docking, efficiently samples a set of ligand-binding pathways. After that, a reasonable docking pose of LB-PaCS-MD is evaluated by the FMO calculation to elucidate a set of protein-ligand interactions, enabling one to know the binding affinity of a specified ligand with respect to a target protein. A possible conformation was proposed for rubraxanthone binding to the SARS-CoV-2 Mpro active site, and allosteric inhibition was elucidated by combining blind docking with k-means clustering. The interaction profile, key binding residues, and considerable interaction were elucidated for rubraxanthone binding to both Mpro sites. Integrated LB-PaCS-MD/FMO provided a more reasonable complex structure for ligand binding at the SARS-CoV-2 Mpro active site, which is vital for discovering and designing antiviral drugs.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Ligands , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL